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Abstract
Differential expression of microRNA (miRNA) is involved in many human diseases and could potentially

be used as a biomarker for disease diagnosis, prognosis, and therapy. However, inconsistency has often been

found among differentially expressed miRNAs identified in various studies when using miRNA arrays for a

particular disease such as a cancer. Before broadly applying miRNA arrays in a clinical setting, it is critical to

evaluate inconsistent discoveries in a rational way. Thus, using data sets from 2 types of cancers, our study

shows that the differentially expressed miRNAs detected from multiple experiments for each cancer exhibit

stable regulation direction. This result also indicates that miRNA arrays could be used to reliably capture the

signals of the regulation direction of differentially expressed miRNAs in cancer. We then assumed that 2

differentially expressed miRNAs with the same regulation direction in a particular cancer play similar

functional roles if they regulate the same set of cancer-associated genes. On the basis of this hypothesis, we

proposed a score to assess the functional consistency between differentially expressed miRNAs separately

extracted from multiple studies for a particular cancer. We showed although lists of differentially expressed

miRNAs identified from different studies for each cancer were highly variable, they were rather consistent at

the level of function. Thus, the detection of differentially expressed miRNAs in various experiments for a

certain disease tends to be functionally reproducible and capture functionally related differential expression

of miRNAs in the disease. Mol Cancer Ther; 10(5); 752–60. �2011 AACR.

Introduction

MicroRNAs (miRNA) compose a class of small endo-
genous noncoding RNA capable of regulating gene
expression, either by inhibiting translation or promoting
mRNA degradation (1). It has been suggested that differ-
ential expression of miRNA is involved in the initiation
and progression of human cancer and thusmay serve as a
disease marker to improve diagnosis, prognosis and
therapy for cancer (2–5). On the basis of miRNA arrays,
numerous studies have been conducted to identify dif-
ferentially expressed miRNAs between cancer and nor-
mal samples (3, 6–10). However, for a particular cancer,
differentially expressed miRNA generated from multiple

studies are often highly inconsistent. For example, no
differentially expressed miRNAs detected from 6 studies
for prostate cancer were shared by all of the studies (11).
Because the reproducibility of discovered biomarkers is
of fundamental importance for validation (12, 13), this
problem must be resolved in a rational way before full
use of miRNA arrays in biological researches is possible.

The irreproducibility problem may not reflect lack of
reliability of the technology platform used butmay reflect
a lack of understanding regarding a correct validation
process for biomarkers (14). It is becoming clear that, in
high-throughout experiments for finding biomarkers for
a disease, the irreproducibility problem could be induced
by, among other factors, diverse biological factors such as
biological variation and heterogeneity of molecular
changes in the disease (15–17). On the other hand, it is
also becoming clear that the diverse molecular changes
(18, 19) including expression changes of miRNAs in
cancer tend to be redundant regarding function (20).
Specifically, diverse expression changes of miRNAs in
cancer may primarily affect cancer-associated pathways
by targeting cancer genes in these pathways (9, 21, 22). If
this is true, different differentially expressed miRNAs
generated from different studies for a cancer may be
consistent in function, as seen for biomarker discovery
based on the mRNA array platform (16, 23). Thus, to
evaluate the reproducibility of differentially expressed
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miRNA discovery in different studies for a particular
cancer, 1 reasonable approach involves taking into
account the functional relationship (16, 24), rather than
simply counting the overlaps. That is, we can design
scores to evaluate the reproducibility of biomarker
discovery using a biological assumption on functional
relations such as expression correlation (16) or function-
ally similarity (24) between biomarkers. Notably, the
underlying biological assumption is statistically testable:
if a score is significantly higher than expected by chance,
then it can provide evidence supporting that the assump-
tion can partially explain the apparently inconsistent
biomarkers.
Here, on the basis of multiple miRNA data sets for 2

cancer types, we showed that the regulation direction
(upregulated or downregulated in cancer samples com-
pared with normal samples) of differentially expressed
miRNA detected in different data sets for each cancer
were highly consistent. This result indicates that the
miRNAarrays could be applied to reliably capture signals
of the regulation direction of differentially expressed
miRNA in cancer (25). Importantly, this result also sug-
gests that the differentially expressed miRNA in a parti-
cular cancer has a consistent up- or downregulation
pattern. On the analysis of different samples for each
cancer, the miRNA displaying the most pronounced dif-
ferential expression varied greatly, which could be attrib-
uted to biological variation of the molecular change of
miRNA in the samples (26). On the basis of the biological
assumption that 2 differentially expressed miRNAs with
significantly overlapped targets may have a similar func-
tion (27), we proposed a score entitled percentage of
overlaps of function-related miRNAs (POF) to evaluate
the functional consistency of differentially expressed
miRNAs for a cancer. For each of the 2 cancers, respec-
tively, we found that most of the POF scores between top-
ranked differentially expressed miRNAs detected from
different studies were rather high, suggesting that
the differentially expressed miRNAs detected from
different studies may point to functionally important
differential expression of miRNA in the disease. Then,
using another independent data set for colon cancer, we

validated the model of functional links between differ-
entially expressed miRNAs extracted from 2 other data
sets for this cancer.

Materials and Methods

Datasets
We analyzed 5 large data sets for 2 cancer types (colon

and gastric). For each data set, the number of samples of
each state (cancer or normal) was not less than 20. The
detailed information was described in Table 1. We
referred to each data set using the following nomencla-
ture: cancer type followed by the total number of samples.
Three data sets were collected for colon cancer: 2 data sets
[Colon99 (6) and Colon168 (7)] were used to analyze the
consistency of differentially expressed miRNAs and
extract the functional link models, and another data set
[Colon108 (8)] was used to validate the functional link
models. The Colon108 data set included 38 technical
replicates with highly reproducible signals (8). For each
sample with replicates in this data set, the expression
value of each miRNA was represented by the average
of quantile normalized values for this miRNA across the
replicates (8).

miRNA targets and cancer-associated genes
Currently, Targetscan (28), miRanda (29), and PicTar

(30) are among the most widely used miRNA–target
interaction prediction algorithms. Thus, we used them
for analyses separately. Considering that miRNA targets
predicted by multiple algorithms might be more reliable
(31), we also used miRNA–targets interactions appearing
in at least 2 of the 8 data sources (see Supplementary
Data).

A total of 2,104 cancer-associated genes were collected
from F-Census which compiles cancer genes from 8 data
sources (24).

Data preprocessing and differentially expressed
miRNA selection

For the data sets of Colon99, Colon168, Gastric41, and
Gastric353, the raw data were preprocessed as follows: (i)

Table 1. Summary of the 5 data sets analyzed in this study

Dataseta (T:N)b Platform Source of normal sample

Colon99 (6) 78:21 OSU_CCCc 11k v2 Normal colonic mucosad

Colon168 (7) 84:84 OSU_CCC v2.0 Adjacent nontumor tissue
Colon108 (8) 80:28 Illumina v1 Adjacent nontumor tissue
Gastric41 (9) 20:21 OSU_CCC 11k v2 Adjacent nontumor tissue
Gastric353 (10) 184:169 OSU_CCC v3.0 Adjacent nontumor tissue

aEach data set was denoted by the following nomenclature: cancer type followed by the total number of samples.
bT, the number of tumor samples; N, the number of normal samples.
cOSU_CCC, Ohio State University custom miRNA microarray chip.
dNormal samples were described as being from the normal colonic mucosa, thus it is unclear whether they were from the patients.
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the median background signal intensity was subtracted
from the signal for each probe; (ii) signal values less than
1 were replaced with 1; (iii) log2-transformation was
applied; (iv) probes absent in more than 20% of samples
were deleted and other missing values were imputed
using the R package kNN imputation function (32); (v)
signal values of replicate probes of a miRNA were aver-
aged; and (vi) quantile normalization was carried out
(33). For Colon108, the quantile-normalized data of the
original study were used. For all platforms, we annotated
probes to mature miRNA using miRbase version 16 (34).

A two-sample t-test was carried out to select the differ-
entially expressed miRNAs. The P values were adjusted
by the Benjamini and Hochberg (BH) correction proce-
dure to account for multiple tests with the false discovery
rate (FDR) < 5% (35). For comparing the top n differen-
tially expressed miRNAs from different data sets, we
ranked miRNAs according to the t-test P values to select
the most significant n ones. The differentially expressed
miRNAs selected for each data set were listed in Supple-
mentary Table S1–S5.

Consistency of regulation direction between two
lists of differentially expressed miRNA

For each cancer, when comparing results found from
multiple data sets generated on different platforms, we
only analyzed the miRNAs presented in all of the data
sets. Using the binomial distribution model, we calcu-
lated the probability of observing from N randomly
selected miRNAs at least m non-differentially expressed
miRNAs with consistent regulation directions across 2
data sets as follows:

P ¼
XN

i¼m

Ci
NðPeÞið1� PeÞN�i

in which Pe is the random probability that 1 non-differ-
entially expressed miRNA with the same regulation
direction exists across 2 data sets. For each cancer, we
roughly defined non-differentially expressed miRNA as
miRNA that was not detected as differentially expressed
miRNA at the FDR level of 10% in either of the data sets
for this cancer. The Pe for each cancer was close to 0.5.

The PO score
The PO (percentage of overlaps) metric is frequently

used to evaluate the consistency of different lists (26, 36,
37). Clearly, to be used as a disease marker for a disease,
a differentially expressed miRNA should have a steady
regulation pattern across different data sets. In this
study we strictly defined differentially expressed
miRNA, shared by 2 lists of differentially expressed
miRNA only to be thus named if it also exhibited the
same direction change across the corresponding 2 data
sets (16). Suppose O miRNAs are shared by list 1 with
length l1 and list 2 with length l2, then the PO score from
list 1 to list 2 is PO12 ¼ O/l1, and the score from list 2
to list 1 is PO21 ¼ O/l2.

To assess the significance of a PO score for 2 differen-
tially expressed miRNA lists with lengths l1 and l2,
respectively, we did a random experiment to test the null
hypothesis that the observed PO score would be expected
by chance for 2 random miRNA lists (with lengths of l1
and l2) extracted from miRNAs presented in both data
sets. This process was repeated 10,000 times. The signifi-
cance level of an observed PO score was defined as the
percentage of the 10,000 random scores no less than the
observed score.

The POF score
We considered 2 miRNAs to be functionally similar if

they (i) had the same regulation direction, (ii) shared
significantly more target genes than expected by chance,
and (iii) shared at least 1 cancer-associated target gene.
The significance of the number of targets shared by 2
miRNAs was calculated according to the cumulative
hypergeometric distribution model:

P ¼ 1�
Xk�1

i¼0

Ci
nC

M�i
N�n

CM
N

in which N is the number of all targets of all miRNAs, M
and n are the numbers of targets for the 2 miRNAs,
respectively, and k is the number of targets shared by
these 2 miRNAs. The P values were corrected by the
Benjamini and Hochberg method for multiple testing
(35).

Next, we proposed the POF score to evaluate the
functional consistency between 2 miRNA lists. Suppose
Of12 (or Of21) denotes the number of miRNAs in list 1 (or
list 2) not shared but functionally similar to at least 1
miRNA in list 2 (or list 1); the POF score from list 1 to list 2
(or from list 2 to list 1) is then POF12 ¼ (O þ Of12)/l1 (or
POF21¼ (OþOf21)/l2). POF is then determined as POF¼
(POF12 þ POF21)/2.

We tested 2 null hypotheses for an observed POF score
by random experiments. The first random experiment,
referred to as targets randomization, was used to test the
null hypothesis that the score can be expected by chance
when no prior biological knowledge of miRNA–target
interaction is used. Here, we assigned genes randomly
derived from the human genome to miRNAs while keep-
ing the number of targets for each miRNA unchanged.
The second random experiment, referred to as miRNAs
randomization, was applied to test the null hypothesis
that the observed POF score can be expected for non-
differentially expressed miRNAs lists with the same
lengths as the differentially expressed miRNAs lists.
Here, approximately, we defined non-differentially
expressed miRNAs for a cancer as the remaining miR-
NAs after excluding the miRNAs detected to be poten-
tially significant with a rather loose FDR cutoff of 10% in
either data set for the cancer. Then, we randomly selected
2 non-differentially expressedmiRNA lists with the same
lengths as the differentially expressed miRNAs lists and
calculated their POF score. This process was repeated
10,000 times. The significance level for an observed POF
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score was defined as the percentage of the randomization
scores no less than the observed value.

Functional link model of differentially expressed
miRNAs
For 2 lists of differentially expressed miRNAs sepa-

rately selected from 2 data sets for a cancer, we con-
structed a network model by linking every 2 miRNAs
between the lists if they are functionally similar according
the criteria described above.
For a new list of differentially expressed miRNAs

detected from a new data set for a cancer, we can test
whether it is associatedwith a previously extractedmodel
for the samedisease.We cando this validationon the basis
of the same assumption for defining functionally similar
miRNAs. That is, for each miRNA in the new list, if it
shows the same regulation direction across all data sets
and shares significantly more targets with at least 1 set of
common targets of 2 linkedmiRNAs in themodel, includ-
ing at least 1 cancer-associated gene, then it is defined as a
functionally similar miRNA with the model.

Pathway enrichment analysis
The hypergeometic distribution model was used to

find the Kyoto Encyclopedia of Genes and Genomes
(KEGG; ref. 38) pathways enriched with common targets
of 2 differentially expressedmiRNAs. If we suppose thats
miRNAsM is the total number of the common targets of 2
miRNA,N is the total number of genes in human genome,
n is the number of genes annotated in a pathway, and k is
the number of the common targets annotated in this
pathway, we then calculate the probability of observing
by chance at least k targets annotated in this KEGG
pathway as follows:

P ¼ 1�
Xk�1

i¼0

Ci
nC

M�i
N�n

CM
N

The raw P values were adjusted by the BH correction
procedure (FDR < 5%; ref. 35).

Results

Consistent regulation direction of differentially
expressed miRNA in a particular cancer

To investigate the consistency of differentially
expressed miRNAs across different data sets, we ana-
lyzed 2 data sets for each of the 2 solid cancers described
in Table 1. In each data set, we selected differentially
expressed miRNAs by t-test at the FDR level of 5%.
Considering that different platforms have different
degrees of coverage of all human miRNAs, we focused
on analyzing the miRNAs presented in both data sets for
a cancer.

In the 2 data sets for colon cancer, 22 and 49 differ-
entially expressed miRNAs were selected from the 110
miRNAs presented in both data sets, respectively, and
they shared 14 differentially expressed miRNAs
(Fig. 1A), in which 13 have the same regulation direc-
tion (upregulated or downregulated in cancer samples
compared with normal samples) across these 2 data
sets. Thus, the PO score (see Materials and Methods)
was 0.59 from the short list to the long list and was 0.27
from the opposite direction. These 2 scores were not
high, but were significantly larger than the expected
scores of 0.32 and 0.15 in the 2 directions (P ¼ 0.0010).
In the 2 data sets for gastric cancer, 78 and 18 differ-
entially expressed miRNAs were identified from the
155 miRNAs presented in both data sets and they
shared 15 differentially expressed miRNAs (Fig. 1B).
The PO score was 0.83 from the short list to the long list,
whereas it was only 0.19 from the opposite direction;
both values were significantly larger than expected by
chance (P < 0.0001). Notably, the longer list of differ-
entially expressed miRNAs included approximately

Figure 1. Consistence analysis
between different differentially
expressed miRNA lists for each
cancer. A, overlap between the 2
lists of differentially expressed
miRNAs extracted from Colon99
and Colon168. In the overlap, 1
miRNA (miR-192, italic) showed
inconsistent deregulation
directions across these 2 data
sets. B, overlap between the 2 lists
of differentially expressedmiRNAs
extracted from Gastric41 and
Gastric353. The differentially
expressed miRNAs were selected
by t-test followed by BH
correction (FDR < 5%).
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half of all miRNAs detected in these 2 cancer types,
indicating that miRNAs are widely altered in cancer.

We then investigated the consistency of the regula-
tion direction of the differentially expressed miRNAs
identified from various studies for colon and gastric
cancers, respectively. For the 2 colon cancer data sets,
13 (92.9%) of the 14 differentially expressed miRNAs
detected in both data sets exhibited the same up- or
downregulation across the data sets (P ¼ 9.16E-04,
binominal distribution test). For the 49 differentially
expressed miRNAs found in the data set Colon99,
after excluding the 14 overlapping differentially
expressed miRNAs, 13 exhibited tentative evidence
of differential expression with P values less than 0.1
in the data set Colon168, and all of them exhibited the
same direction change across the 2 data sets (P ¼
1.22E-04, binominal distribution test). This result indi-
cates that many miRNAs with tentative evidence of
differential expression in the data set Colon168 may
actually be differentially expressed in colon cancer.
Similarly, for gastric cancer, all of the 15 overlapping
differentially expressed miRNAs showed the same
regulation directions across the 2 data sets (P ¼
3.05E-05, binominal distribution test). For the 78 dif-
ferentially expressed miRNAs found in the data set
Gastric353, after excluding the 15 overlapping differ-
entially expressed miRNAs, 28 exhibited P values less
than 0.1 in the data set Gastric41 and 27 (96.4%) of
them showed the same regulation directions across the
2 data sets (P ¼ 1.08E-07, binominal distribution test).
The results showed that the regulation direction of the
differentially expressed miRNAs detected in both data
sets for each of the 2 cancers were highly consistent,
indicating that miRNA arrays could reliably capture
the signals of the regulation direction of differentially
expressed miRNAs in a particular cancer.

Functional consistency of top-ranked differentially
expressed miRNA for a particular cancer

Researchers are often interested in the most significant
differentially expressed miRNAs. However, for a parti-
cular cancer, the top-ranked n most significant differen-
tially expressed miRNAs separately detected from
various studies are usually highly inconsistent. For exam-
ple, when n was equal to 10, only 2 (hsa-miR-106b and
-10b) were shared by 2 lists for colon cancer and 3 (hsa-
miR-181b, -21, and -218) were shared for gastric cancer.
The corresponding PO scores were only 0.2 and 0.3.
When n was equal to 20, the PO scores were 0.2 and
0.45 for colon and gastric cancer, respectively. Then, we
proposed the POF score (see Materials and Methods)
to evaluate the functional consistency of 2 lists of the
top-ranked n differentially expressed miRNAs for each
cancer on the basis of the assumption that different
differentially expressed miRNAs may disturb the same
cancer-associated pathways through their common tar-
gets. We calculated the POF scores using the miRNA
targets predicted by TargetScan (28), miRanda (29), and
PicTar (30), respectively. Also, we calculated the scores
using miRNA targets documented in at least 2 of the 8
data sources (see Materials and Methods). We found that
all the results were quite similar (Table 2), indicating that
functional analysis between miRNAs on the basis of their
nonrandom target overlap is rather robust against a
certain level of false targets predicted for miRNAs.
Hence, we only described the results on the basis of
the targets predicted by TargetScan in the following text.

Between the lists of the top 10 (or 20) differentially
expressed miRNAs detected separately from the 2 data
sets for colon cancer, the POF score was 0.90 (or 0.83). We
tested 2 null hypotheses for these observed high
POF scores by random experiments (see Materials and
Methods). For the targets randomization experiment, the

Table 2. Scores for the top n (10 or 20) most significant differentially expressed miRNAs

Dataset Method POF e-POF1a e-POF2b POF e-POF1 e-POF2

Colon168 vs. Colon99 TOP 10 TOP 20
TargetScan 0.90 0.20 (<0.0001) 0.43 (0.0004) 0.83 0.20 (<0.0001) 0.46 (0.0004)
miRanda 0.90 0.20 (<0.0001) 0.50 (0.0006) 0.85 0.20 (<0.0001) 0.50 (<0.0001)
PicTar 0.80 0.20 (<0.0001) 0.48 (0.0039) 0.78 0.20 (<0.0001) 0.47 (0.0003)
Integratedc 0.90 0.20 (<0.0001) 0.47 (0.0004) 0.85 0.20 (<0.0001) 0.49 (<0.0001)

Gastric353 vs. Gastric41
TargetScan 0.95 0.30 (<0.0001) 0.44 (<0.0001) 0.98 0.45 (<0.0001) 0.47 (<0.0001)
miRanda 0.95 0.30 (<0.0001) 0.50 (0.0004) 0.98 0.45 (<0.0001) 0.50 (<0.0001)
PicTar 0.95 0.30 (<0.0001) 0.44 (0.0004) 0.95 0.45 (<0.0001) 0.48 (<0.0001)
Integratedc 0.95 0.30 (<0.0001) 0.47 (0.0004) 0.98 0.45 (<0.0001) 0.49 (<0.0001)

Abbreviation: POF, percentage of overlaps of function.
aExpected POF score (P-value) estimated by doing targets randomization 10,000 times.
bExpected POF score (P-value) estimated by doing miRNAs randomization 10,000 times.
cIntegrated, miRNA–target interactions were in at least 2 of 8 miRNA target sources.
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average of 10,000 random POF scores for either the top 10
or 20 miRNAs was 0.20. In 10,000 of the random POF
scores, no one exceeded the observed scores (P < 10E-4,
Table 2), we thus rejected the null hypothesis that the
observed POF score can be expected by chance when no
prior biological knowledge of miRNA–target interaction
is used. For the miRNAs randomization experiment,
we approximately defined non-differentially expressed
miRNAs as those miRNAs not detected as differentially
expressed miRNA using a loose FDR control of 10% in
either data set. By randomly extracting 2 lists of 10 or 20
non-differentially expressed miRNAs 10,000 times, the
average of random POF scores was 0.44 or 0.47, signifi-
cantly smaller than the corresponding observed scores.
Thus, we rejected the null hypothesis that the observed
POF score can be expected for non-differentially
expressed miRNAs lists with the same lengths as the
differentially expressedmiRNAs lists (Table 2). Similarly,
the POF scores for the lists of the top 10 or 20 miRNAs
separately detected from the 2 data sets for gastric cancer
was 0.95 or 0.98, both of which were significantly higher
than those obtained using the above 2 kinds of random
experiments (Table 2).

Functional link model of differentially expressed
miRNAs for a particular cancer
We constructed the model of functional relationships

between the lists of the top 10 differentially expressed
miRNAs (Fig. 2A) separately selected from the 2 data sets
for colon cancer (seeMaterials andMethods). On the basis
of this model, we explained some functional links. For
example, hsa-miR-106a, and -20a were detected as upre-

gulated differentially expressedmiRNAs in Colon168 but
not in Colon99. However, they may play similar function
with hsa-miR-106bwhichwas detected as an upregulated
differentially expressed miRNA in both data sets. All
these 3 miRNAs belong to the miR-17 family and regulate
the same set of targets including 15 known tumor sup-
pressor genes such as CDKN1A, PIK3R1, RB1, STK11 and
TGFBR2. These common targets were significantly
enriched in some cancer-associated pathways such as
TGF-b signaling pathway (P ¼ 2.47E-5), mTOR signaling
pathway (P ¼ 3.16E-5), and cell cycle (P ¼ 4.91E-3). For
another example, hsa-miR-199b-5p was detected as an
upregulated differentially expressed miRNA only in
Colon99, but it may play the same role with hsa-miR-
135b upregulated in Colon168 as they cotargeted signifi-
cantly more targets including 1 tumor suppressor gene
(MAP2K4). These common targets were significantly
enriched in some cancer-associated pathways such as
ErbB signaling pathway (P ¼ 2.90E-4). Similarly, hsa-
miR-30a was detected as a downregulated miRNA only
inColon99, but itmayplay the same rolewithhsa-miR-30c
detected as a downregulated differentially expressed
miRNA in Colon168. Both of them were from the miR-
30 family and shared the same targets including 36
known oncogenes such as ABL1, BCL2, KRAS and
PDGFRB. These common targets were significantly
enriched in some cancer-associate pathways such as axon
guidance (P ¼ 2.48E-6), focal adhesion (P ¼ 1.19E-3) and
MAPK signaling pathway (P ¼ 3.28E-3).

Similarly, we constructed the model of functional
relationships between the 2 lists of the top 10 differen-
tially expressed miRNAs (Fig. 2B) separately selected
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Upregulated module in Colon cancer Downregulated module in Colon cancerA

miRNA in list 1 miRNA in list 2 Overlaps of two lists Functional link
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Figure 2. The function link model between the 2 lists of the top-ranked 10 differentially expressed miRNAs for each cancer. For 2 lists of
differentially expressed miRNAs for a cancer, we linked every 2 functionally similar miRNAs between the lists to construct the model (see Materials and
Methods). A, the model between the top-ranked 10 differentially expressed miRNAs from Colon99 (cycle and diamond) and the top-ranked 10
differentially expressed miRNAs from Colon168 (rectangle and diamond); B, the model between the top-ranked 10 differentially expressed miRNAs
from Gastric353 (cycle and diamond) and the top-ranked 10 differentially expressed miRNAs from Gastric41 (rectangle and diamond). For a cancer, the
upregulated module consists of upregulated miRNAs (left) and the downregulated module consists of downregulated miRNAs (right).

Consistency of Differential Expression of miRNA

www.aacrjournals.org Mol Cancer Ther; 10(5) May 2011 757



from the 2 data sets for gastric cancer. In this model, hsa-
miR-93 was detected as an upregulated differentially
expressed miRNA exclusively in data set Gastric353.
However, it might play a similar regulatory role with
hsa-miR-25 which is in the same cluster with hsa-miR-
93 and was detected as an upregulated differentially
expressed miRNA in data set Gastric41 as they shared
127 targets (P ¼ 8.72E-12). Their common targets were
significantly enriched in the cancer-associated TGF-b
signaling pathway (P ¼ 2.28E-8). For another example,
hsa-miR-181c was upregulated in Gastric353 but they
may play the same function with hsa-miR-181b detected
to be upregulated in Gastric41. These 2 miRNAs belong
to the miR-181 family and they regulate the same set of
targets including 14 known tumor suppressor genes
such as ATM, CACNA2D2, and CYLD. The common
targets were significantly enriched in some cancer-
related pathways such as T cell receptor signaling path-
way (P ¼ 1.26E-3) and apoptosis (P ¼ 4.89E-2). Simi-
larly, hsa-miR-148b and hsa-miR-212, identified as
downregulated differentially expressed miRNAs sepa-
rately in data set Gastric353 and Gastric41, might also
play a similar regulatory role in cancer as they shared
significantly more common targets (P ¼ 2.40E-10)
including 10 cancer-associated genes such as DDX6,
SMAD2, and NFAT5. These common targets were sig-
nificantly enriched in some cancer-related pathways
such as the Wnt signaling pathway (P ¼ 2.51E-5) and
the TGF-b signaling pathway (P ¼ 4.80E-6).

We were able to collect another independent data set
(Colon108) for colon cancer. Here, we used this data set to
validate the functional link model constructed for the 2
lists of the top 10 differentially expressed miRNAs sepa-
rately detected from the previous 2 data sets (Fig. 2A).We
only analyzed the 101 miRNAs presented in all of the 3
data sets, among which 62 miRNAs were differentially
expressed in Colon108. For the 16 miRNAs in the model,
11 were differentially expressed in Colon108. Among
these 11 differentially expressed miRNAs, 10 (hsa-miR-
1, -106a, -106b, -10b, -135b, -20a, -21, -30a, -30c, and -92a)
exhibited the same regulation directions across the 3 data
sets, and this was highly unlikely to happen by chance
(P ¼ 5.86E-3, binominal distribution test). In the opposite
direction, 8 (80%) of the top most significant 10 miRNAs
detected from Colon108 were included in or functionally
linkedwith themodel, whichwas significantly more than
expected by chance according to both the targets rando-
mization and the miRNAs randomization experiments
(both values of P < 0.0001). Among these 8 differentially
expressed miRNAs, 3 are the members of this model,
including 1 upregulated miRNA (hsa-miR-135b) and 2
downregulated miRNAs (hsa-miR-10b and -30a). The
other 5 miRNAs (hsa-miR-7, -147, -195, -9, and -95) were
functionally associated with themodel (seeMaterials and
Methods). In Parallel, we constructed the functional link
model for the 2 lists of top 20miRNAs separately from the
previous 2 data sets (see Supplementary Fig. S1). Similar
validation results were observed for this model. Twenty

of the 29 miRNAs in the model were differentially
expressed in Colon108. Among these 20 differentially
expressed miRNAs, 18 exhibited the same regulation
directions across the 3 data sets (P ¼ 2.01E-4, binominal
distribution test). For the top most significant 20 differ-
entially expressed miRNAs detected from Colon108, 15
(75%) were included in or functionally linked with the
model, which was also significant according to both 2
kinds of experiments (both values of P < 0.0001). There-
fore, for this cancer type, the differentially expressed
miRNAs from the 3 data sets were rather reproducible.
Note that for gastric cancer, we were unable to find
another large independent data sets to do the same
analysis.

Discussion

Our results showed that miRNA arrays could reliably
detect the signals of the regulation direction of differen-
tially expressed miRNA in cancer, in a manner similar to
the study of differential gene expression in diseases on
the basis of microarrays (25). Our results also suggest that
miRNAs are widely altered in a particular cancer and
show a consistent up- or downregulation pattern, as a
part of the primary pathogenesis or subsequent response
in cancer progression. However, for a particular cancer,
the top-ranked differentially expressedmiRNAs detected
from different data sets varied greatly. It has been sug-
gested that, due to the limited statistical powers in the
presence of large variations of gene expression in a
complex disease, lists of differentially expressed genes
detected from various microarray experiments may be
highly inconsistent but may generally comprise true
discoveries (16, 39). Also, on the basis of miRNA arrays,
the apparently irreproducible differentially expressed
miRNAs detected from different experiments may all
partially capture some important differential expression
of miRNAs in the disease. Nevertheless, on the basis of
the POF score, we have obtained evidence that top-
ranked differentially expressed miRNAs separately
detected from different studies for a cancer tend to
regulate genes in the same cancer-associated pathways.
This result is consistent with the observation that most
humanmiRNA tends to play a principal role in important
functions in a redundant manner (20). Notably, when
comparing data produced from different platforms with
different degrees of coverage of all human miRNAs, we
only analyzed the miRNAs commonly detected by the
platforms. We could expect that results produced by the
same platform could reach higher reproducibility than
results produced by different platforms which may have
extra between-platform variation.

Notably, we have also investigated the 6 data sets for
prostate cancer reviewed by Gandellini and colleagues
(11). Among the 5 publicly available data sets, 3 data sets
included only 8, 4, and 7 normal samples, respectively,
which might be too small to get reliable results. Thus, we
only analyzed the data set (denoted as Prostate76) from
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(40) and the data set (denoted as Prostate80) from (41).
From the 83miRNAs presented in both data sets, 22 and 8
differentially expressed miRNAs were detected for the 2
data sets, respectively and they shared only 1 miRNA
(hsa-miR-221; see Supplementary Results). We could not
observe significant consistency between these 2 differen-
tially expressed miRNA lists (see Supplementary
Results). As suggested by Gandellini and colleagues
(11), discrepancy between the 2 data sets could be
explained by the difference in their approach of
dissection, preservation of specimens. In addition, the
phenotypic heterogeneity within each data set might
contribute to the inconsistence. Among the 40 stage
T2a/b prostate cancer samples in Prosate80, 20 showed
chemical relapse within 2 years and 20 did not show
chemical relapse within 10 years and 16 miRNAs were
differentially expressed between these 2 groups (41).
Among the 60 tumors in Prostate76, 35 were organ
confined and 17 showed extraprostatic extension and
changed miRNA abundance was also observed across
these 2 groups of patients (40). Thus, when we find
inconsistent results from different studies for a disease,
we need to carefully consider possible influences of
diverse factors such as difference in experimental design,
biological variation and heterogeneity of the disease.
One limitation of our analysis is that we studied the

function of miRNAs through their targets predicted by
tools that face the problem of a high false positive rate
(42). However, we found our results were rather robust
against a certain level of false targets predicted for miR-
NAs. Nevertheless, it is generally acknowledged that all
targets of miRNA comprise a large battery for all biolo-
gical conditions (43). Thus, further study is needed to
achieve a more comprehensive understanding of targets
active in carcinogenesis using large-scale matched
miRNA and mRNA arrays (40, 44–46). One issue fre-
quently of concern to researchers is the desire to find
differentially expressed miRNAs shared by multiple
cancer types as well as cancer type-specific differentially
expressed miRNAs. For example, Volinia and colleagues
(9) compared 6 cancer types and picked 21 upregulated
miRNAs associated with more than 3 cancer types, sug-
gesting the complexity and potential for the understand-
ing of common mechanisms apparent in different
cancers. Various groups have attempted to identify dif-
ferentially expressed miRNAs unique to 1 or several
cancer types. For example, Bandyopadhyay and collea-
gues (47) defined cancer type-specific miRNA to be
differentially expressed miRNA found in fewer than 2
cancer types. Johnson and colleagues (48) concluded that
let-7 was lung cancer specific as it was found to be
differentially expressed in lung cancer but not in colon
and breast cancer. However, as shown in this study,
for a particular cancer various studies also tend to
generate different yet reliable differentially expressed
miRNAs. Thus, it is possibly misleading to define cancer
type-specific differentially expressed miRNAs in such a
simple way, as the samples used in current miRNA array

experiments would be insufficient to generate a full list of
differentially expressed miRNAs for a particular cancer.
In our future studies we plan to analyze arrays for
additional cancer types, andmoreover attempt to identify
the cancer type-specific differentially expressed miRNAs
by observing differentially expressed miRNAs detected
for a variety of cancer types while taking into considera-
tion the opposite regulation direction for different cancer
types. For example, in this study, we found that hsa-miR-
221 consistently upregulated in both of the 2 gastric
cancer data sets while it consistently downregulated in
both of the 2 prostate cancer data sets.

In the past few years, miRNA-expression profiling of
human tumors has identified many miRNA biomarkers
associated with diagnosis, progression, prognosis and
treatment for cancers (3). Evaluating the reproducibility
of the differentially expressed miRNAs found from dif-
ferent studies for a cancer should be an indispensable
step toward the preclinical research. For example,
because a specific miRNA can targets multiple genes
involved in multiple cancer-associated pathways, it has
been proposed that miRNAs could be drug targets in
cancer therapy (5). Certainly, the best drug target is the
kind of miRNAs consistently disturbed in different
cohorts of patients. However, differentially expressed
miRNAs identified from different cohorts of patients
for a particular cancer are often highly inconsistent
and thus hold back the use of miRNAs biomarkers.
Our study suggested that miRNAs playing roles in 1
cohort of patients may have functionally similar miRNAs
playing the same roles in other cohorts of patients. In
other words, each of the functional similar miRNAs may
potentially play an important role in tumorigenesis for a
part of patients. In this situation, multiplex RNA inhibi-
tion targeting strategy is expected for efficient drug
design (49). Thus, the reproducibility evaluation of the
differentially expressed miRNAs in different cohort of
patients could provide a valuable guide for the drug
target design. Future work is warranted to suggest com-
binations of differentially expressedmiRNAs for efficient
drug design by considering their overall sample coverage
for a cancer.
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