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ABSTRACT

Motivation:Microarrays datasets frequently contain a large number of

missing values (MVs), which need to be estimated and replaced for

subsequent data mining. The focus of the paper is to study the effects

of different MV treatments for cDNA microarray data on disease clas-

sification analysis.

Results:By analyzing five datasets, we demonstrate that among three

kinds of classifiers evaluated in this study, support vector machine

(SVM) classifiers are robust to varied MV imputation methods

[e.g. replacing MVs by zero, K nearest-neighbor (KNN) imputation

algorithm, local least square imputation and Bayesian principal

component analysis], while the classification and regression tree

classifiers are sensitive in terms of classification accuracy. The

KNNclassifiers built on differentially expressed genes (DEGs) are

robust to the varied MV treatments, but the performances of the

KNN classifiers based on all measured genes can be significantly

deteriorated when imputing MVs for genes with larger missing rate

(MR) (e.g. MR > 5%). Generally, while replacing MVs by zero

performs relatively poor, the other imputation algorithms have little

difference in affecting classification performances of the SVM or

KNN classifiers. We further demonstrate the power and feasibility of

our recently proposed functional expression profile (FEP) approach

as means to handle microarray data with MVs. The FEPs, which are

derived from the functional modules that are enriched with sets of

DEGs and thus can be consistently identified under varied MV treat-

ments, achieve precise disease classification with better biological

interpretation. We conclude that the choice of MV treatments should

be determined in context of the later approaches used for disease

classification. The suggested exclusion criterion of ignoring the

genes with larger MR (e.g. >5%), while justifiable for some classifiers

such as KNN classifiers, might not be considered as a general rule for

all classifiers.

Contact: guoz@ems.hrbmu.edu.cn; yangbf@ems.hrbmu.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Precise classification of disease phenotypes based on gene expres-

sion profiles has been one of the most successful applications of

micrarrays (Furey et al., 2000; Dudoit et al., 2002; Zhang et al.,
2003) and continues to be the focus of many recent studies (Asyali

et al., 2006). However, some uncertainties remain in deciphering

high-throughput expression experiments because of a large amount

of data errors introduced by diverse factors such as technical failure

and low signal-to-noise ratio. When these unreliable microarray

measurements are discarded during the image analysis and data

normalization, missing values (MVs) in up to 95% of the monitored

genes can appear in the resulting dataset (de Brevern et al., 2004).
Since many algorithms for microarray analysis require a complete

data matrix as the input, MVs must be imputed before the sub-

sequent analyses.

The MVs are usually replaced by their estimated values based on

information available in the dataset. Several methods for data

imputation for high-dimension microarray data have been proposed,

including K nearest-neighbor (KNN) imputation (Troyanskaya

et al., 2001), local least squares imputation (Kim et al., 2005)
and Bayesian principal component analysis (Oba et al., 2003). It
has been shown that different imputation strategies for MVs can

seriously bias a subsequent analysis, e.g. significant expression

analysis (Jornsten et al., 2005; Scheel et al., 2005) and gene clus-

tering analysis (de Brevern et al., 2004). For disease classification

analysis, many studies (Zhang et al., 2003; Norsett et al., 2004)
follow the preprocessing protocol suggested by Dudoit et al. (2002),
i.e. screening out the genes with missing data in more than a certain

number of arrays, and then replacing the remaining MVs by using

a data imputation approach. However, to the best of our knowledge,

no study has been done to address systematically the sensitivity of

the alternative classification algorithms to various data imputation

methods, which can be problematic for some uncertainties in inter-

preting and comparing the disease classification results based on

cDNA microarray data. In this study, by using five real cDNA

datasets, we explore the impacts of several commonly used data

imputation methods on the performances of three different classi-

fiers [support vector machine (SVM), KNN and classification and�To whom correspondence should be addressed.
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regression trees (CART)]. The classifiers are built on either all genes

measured in the microarrays or the feature genes selected as ‘dif-

ferentially expressed genes (DEGs)’ (Tusher et al., 2001). Selecting
a subset of feature genes, including the identification of the DEGs

characterizing the varied expression patterns between disease states,

can often enhance the classification performance on high dimen-

sional microarray data (Bo and Jonassen, 2002; Li et al., 2005).
However, a major problem for using the feature genes is that some

factors such as the thresholds of expression significance (Pan et al.,
2005) and the MV imputation methods (Jornsten et al., 2005; Scheel
et al., 2005) can lead to very different DEGs (or feature genes) from
the same experiment.

Despite the uncertainty in selecting feature genes, it has been

shown (Hosack et al., 2003) that using Gene Ontology (GO)

(Ashburner et al., 2000), the functional modules enriched with

DEGs identified by different methods are relatively robust. For

human disease analysis, although thousands of genes can be meas-

ured simultaneously in microarray experiments, many important

disease relevant genes may actually be absent (or missing) on

the microarrays. In such cases, the underlying mechanism of the

disease(s) under study is more probably being captured within the

functional context of the biologically related genes measured on

the microarrays. Therefore, it is of great interest, especially in the

scenarios of microarray experiments with a large number of missing

genes, that we can still classify disease samples based on the robust

functional modules with the capability of explicitly introducing

biological knowledge into data analysis and greatly reducing the

high dimensional microarray data. In our previous study (Guo et al.,
2005), we developed such a modular approach based on some

summary measures of the expression data of the DEGs contained

in the functional modules. In this study, we will demonstrate that the

modular approach can achieve precise disease classification with

better biological interpretations based on the functional modules

that are very robust to different MV treatments.

2 METHODS

2.1 cDNA microarray data and preprocessing

In this paper, we focus on two-class classification. In each of the five publicly

available cDNA microarray datasets, two disease subtypes with the largest

sample sizes are thus selected. The breast cancer dataset contains 20 849

genes (UniGene clusters) measured on 21 invasive lobular carcinoma (ILC)

and 38 invasive ductal carcinoma (IDC) samples (Zhao et al., 2004). The

prostate cancer dataset contains 20 815 genes measured on 71 prostate

tumors and 41 normal prostate specimens (Lapointe et al., 2004). The

lymphoma dataset contains 2188 genes measured on 9 follicular lymphoma

(FL) and 11 chronic lymphocytic leukemia (CLL) samples (Alizadeh et al.,

2000). The gastric cancer dataset contains 20 152 genes measured on

103 gastric tumors and 29 normal gastric samples (Chen et al., 2003).

The liver cancer dataset contains 9904 genes measured on 82 liver tumors

and 74 normal liver samples (Chen et al., 2004).
The characteristics for the five datasets are shown in Table 1. The Genes

with MV (GMV) column, recording the percentage of genes with at least one

MV, is 75, 65, 48 and 47%, and 78% for the 5 datasets respectively. The

Overall Missing Rates (OMR) column, denoting the percentage of MVs in

the whole data, is 14, 13, 2, 6 and 6% for the five datasets respectively. We

define a gene’s missing rate (MR) as the percentage of its missing data points

in all samples in a dataset. The distributions of the genes with different

amount of MVs are also shown (Table 1). When the MR threshold is set at

5%, there are 49, 59, 69, 93 and 56% genes remained (i.e. with MR� 5%) in

the breast, prostate, lymphoma, gastric and liver cancer datasets respectively,

and the rate increases to 70, 63, 81, 97 and 77% when the MR threshold is

10%. Henceforth, we can retain most information for lymphoma and gastric

cancer datasets if we set MR threshold at 5 or 10%, while 37 and 30% genes

are lost for breast and prostate datasets when the MR threshold is set at 10%.

Prior to data imputation, we perform two preprocessing procedures:

(1) carrying out base two logarithmic transformations; and (2) using median

normalization to subtract the median from each gene so that the observations

have median 0.

2.2 Imputation methods

Before classifying samples between biological subtypes based on microarray

data, MVs have to be imputed on the data matrix, say G with the element gij
denoting the expression level of the i-th gene in the j-th sample. In this study,

we investigate four different methods for data imputation. ReplacingMVs by

zero (Alizadeh et al., 2000) is the simplest approach to dealing with MVs,

and we refer to it as Zimpute. The most frequently used Nearest-Neighbor

imputation algorithm (KNNimpute) for data imputation (Troyanskaya et al.,

2001) estimates a MV of the gene i in sample j by the weighted average of

expression values in sample j of the k closest genes, based on the Euclidean

distance measure for estimating the similarity of neighboring genes. For the

weighted average, the contribution of each gene is weighted by its inverse

distance to gene i. As the method estimates MVs well within the range

Table 1. Missing value occurrences in five datasets: the GMV, the OMR and the number of genes with MR in different ranges

MR Sample Tissue GMVa (%) OMRb (%) Unigene 0% 5% 10% 20% 30% 40%

Breast cancer 59 21 ILC 65 14 20 849 7211 10 154 13 119 17 688 19 001 19 112

38 IDC

Prostate cancer 112 71 tumor 75 13 20 815 5257 12 355 14 503 16 351 18 509 18 968

41 normal

Lymphoma 20 9 FL 48 2 2188 1157 1520 1765 2038 2147 2179

11 CLL
0% 1% 3% 5% 10% 20%

Gastric cancerc 132 103 tumor 47 6 20 152 10 479 14 666 17 304 18 688 19 523 19 719

29 normal

Liver cancer 156 82 tumor 78 6 9904 2179 3246 4585 5514 7598 9784

74 normal

aGMV: the percentage of genes with at least one MV in each dataset.
bThe Overall Missing Rates (OMR): the percentage of MVs with respect to the whole data in each dataset.
cFor the gastric and liver cancer data, there are >97% genes with MR �20%, respectively, we set a more detailed spectrum of MR for subsequent analysis.
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of 10–20 neighbors and is relatively insensitive to the exact value of k
(Troyanskaya et al., 2001), we set k ¼ 15 in this study. Local Least Square

imputation (LLSimpute) (Kim et al., 2005) is a regression-based method to

estimate the MVs of a gene using its most similarly co-expressed k genes,

based on the absolute measure of Pearson correlation coefficient. The

Bayesian Principal Component Analysis (BPCA) (Oba et al., 2003)

estimates the MVs within a Bayes inference framework consisting of

three components, which are principal component regression, Bayesian

estimation and iterations based on expectation maximization. To impute

the MVs, BPCA assumes a global covariance structure of the gene expres-

sion data, while KNNimpute and LLSimpute use local gene co-expression

structure. Details for these imputation techniques were described already in

the original papers.

2.3 Differentially expressed genes and

functional modules

We further investigate the power and feasibility of using the concepts of

DEGs and functional modules for analyzing microarray data with MVs, in

particular, the effects of the MV imputation on the classifiers trained on the

DEGs and the functional modules. We select DEGs using SAM (Tusher

et al., 2001) with false discovery rate �0.1.

Functionally related genes tend to express and perform their highly integ-

rated roles in modular fashions (Hartwell et al., 1999), often reflected by a

high degree of concert of the gene reactions to stimuli such as disease

conditions (Segal et al., 2004). Based on the most widely used gene func-

tional annotation system GO (Ashburner et al., 2000), we apply a hyper-

geometric distribution (Draghici et al., 2003) to calculate the probability p of

a GO ‘biological process’ category having the number of the annotated

DEGs by random chance. When the p-values are used as statistical signi-

ficance levels for selecting modules, generally, correction for multiple tests

should be addressed (Osier et al., 2004). However, it has been suggested that

in disease subtypes, many genes disturbed by disease condition(s) change

systematically (Alizadeh et al., 2000), indicating that the modular expres-

sions of the genes in the biological pathways appear in a relatively active

fashion rather than in a clearly separated way. Therefore, we use the p-value

as a heuristic measure for roughly ranking the relative enrichment of DEGs

in the GO classes, which directs the analysis to the functionally most active

classes. We select the GO categories enriched with DEGs, with p-value

�0.05, and refer to them as candidate ‘differentially expressed functional

modules’ or ‘modules’ for short. We restrict to analysis of those modules

annotated with at least five genes. When two modules are of a general-

specific relationship, only the module with more specific description is

retained. Because a module is determined by the joint statistical behaviors

of a set of genes, it is insensitive to a few outliers and as such robust to MV

treatments.

According to the SAM statistics, we classify the DEGs in a module as up-

and down-regulated across the disease subtypes. For a disease sample, we

use a summary measure (the arithmetic mean or the median) of the gene

expression values in a module, separately for the up- and down-regulated

DEGs, to reflect the modular expression of the genes in the sample. The

modular summary measures for all samples in a dataset produce the func-

tional expression profiles (FEPs) of the disease subtypes (Guo et al., 2005).
We classify disease subtypes based on the FEPs, which consider the gene

expressions within a functional module as an integrated data point and thus

reduce the high dimensional gene expression profiles of thousands of genes

to a small number of modules that are robust to MV treatments. These

biological modules can also facilitate the interpretation of the classification

results at the modular level.

2.4 Classifiers

The three classification algorithms, as described by Dudoit et al. (2002), are
evaluated in this study: hard-margin SVM with a first-degree dot product

kernel function, KNN classifier with k ¼ 11 and CART. A classifier is

evaluated using leave-one-out cross-validation (LOOCV), in which each

sample in the training set is left out in turn, and the accuracy rate of the

classifier is computed as the percentage of the number of times that the

classifier is correct in its predictions. The LOOCV procedure provides an

unbiased estimate of the true accuracy rate of the classification procedure

and has been widely used to evaluate classifiers (Furey et al., 2000; Zhang
et al., 2003).

If the phenotypic information of the test samples is used in training the

classifier, although it has been suggested that the accuracy rate estimate may

still be proper for the purpose of ranking true accuracy rate of classifiers

(Braga-Neto et al., 2004), the estimate may be biased because of some

resubstitution effects. To attempt to provide an unbiased estimate of the

accuracy rate of the classifier, we perform selection of DEGs and GO cat-

egories ‘within the cross-validation loop’ for each leave-one-out training set

(Simon et al., 2003). As the gene expression values of the left out test sample

may influence the imputation result, it might be proper to perform the very

time-consuming MVs imputation for samples in each of the cycles in

LOOCV. On the other hand, most imputation methods estimate MVs in

some unsupervised ways by exploiting the co-expression relationships

among genes across different samples, which are akin to the gene cluster

analysis. In such unsupervised imputation methods, samples are treated as

data points and their class labels are ignored, which is quite different from

the supervised analysis such as the DEG selection targeted at the best sep-

aration between phenotypic classes of samples. By considering the unsu-

pervised imputation procedure as an independent data preprocessing step, we

thus estimate MVs only once for a set of experiments, as performed

in most of similar data analyses (Furey et al., 2000; Dudoit et al., 2002;

Zhang et al., 2003).

3 RESULTS

3.1 Classification based on gene expression profiles

In breast, prostate and lymphoma datasets, given the MR threshold

at 5n% (n ¼ 0, 1, 2, 4, 6, 8), the MVs of the genes with MR smaller

than the threshold are replaced by zero (Zimpute) or their estimated

values derived from KNNimpute, LLSimpute and BPCA respect-

ively, while the data of the genes with higher MR are ignored. For

the gastric cancer data, there are 93% genes with MR� 5%, and for

the liver cancer data, there are 99% genes with MR � 20%. There-

fore, we set a more detailed spectrum of MR (1, 3, 5, 10 and 20%)

for these two datasets for subsequent analysis.

The accuracies for the SVM, KNN and CART classifiers trained

on breast and prostate cancer data with different MV treatments are

shown in Figure 1. The results for three other datasets are provided

in a Supplementary file (Supplementary Data 1). The SVM classi-

fiers perform well and are very robust to varied MV treatments.

Compared with SVM classifiers, the performances of KNN and

CART classifiers are significantly affected by MV treatments. In

the breast dataset, when no MV is allowed, the accuracy of SVM

reaches its highest value (90%), and drops slightly when varying

amount of MVs are replaced by different MV imputation methods

(Fig. 1a). However, in the other four datasets, the SVM classifiers

are not affected by data imputation and methods (see Fig. 1d and

Supplementary Data 1). The accuracy of KNN classifier reaches its

highest value (88%) for the liver cancer when the MR threshold is

set at a small value (5 or 10%), or when no MV is allowed (MR¼ 0)

for the other four datasets (Fig. 1b for breast cancer and Fig. 1e for

prostate cancer, and the Supplementary Data for other cancers). For

genes with larger MR (e.g. MR > 5%), using their estimated MVs

actually deteriorates the performances of the KNN classifiers. As

demonstrated in Figure 1c and f, CART classifiers are very sensitive

to varied MV treatments.

Effect of missing values on disease classification
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Compared with KNNimpute, LLSimpute and BPCA, when

imputing the MVs of genes with larger MR (e.g. MR >5%), Zimpute

leads to either a slight decline in terms of accuracy for SVM clas-

sifiers (e.g. in the breast cancer dataset), or more obvious drops for

the KNN classifiers in four datasets (Fig. 1 and Supplementary

Data). The slight better performances of Zimpute for CART clas-

sifiers in the prostate cancer and lymphoma datasets (Fig. 1 and

Supplementary Data) may possibly owe to the unstable behaviors of

the CART algorithm for analyzing high dimensional noisy data.

Although BPCA performs better for the KNN classifiers in the

breast cancer dataset, in general, the KNNimpute, LLSimpute

and BPCA imputation algorithms make little difference in affecting

classification performances. It is also worthy to note that in a wide

range of MR threshold values the most commonly used KNNimpute

method are comparable with other more complicated imputation

methods in context of disease classification analysis.

We also evaluate the effects of replacing MVs on the accuracies

of the classifiers built on the DEGs. As shown in Figure 2 and

Fig. 2. Accuracy rates of DEG-based classifiers, with varied MV treatments in breast and prostate cancer datasets.

Fig. 1. Accuracy rates of three different classifiers, with varied MV treatments in breast and prostate cancer datasets.
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the Supplementary Material (Supplementary Data 2), similar to the

results when no DEGs are selected, the SVM classifiers are very

robust to varied MV imputing methods, while the CART classifiers

are sensitive and perform relatively poor compared with the SVM

and KNN classifiers. However, even for genes with high

percentages of MVs, data imputation does not lead to marked

decline in the performance of the KNN classifiers, which is quite

different from the situation when no DEGs are selected. Again, in

general, the results show that data imputation does not enhance

much the accuracy rates of the studied classifiers, even for the

breast and prostate datasets that contain high percentages of

MVs. As shown in Figure 2 and the Supplementary Material (Sup-

plementary Data 2), KNNimpute, LLSimpute and BPCA imputa-

tion algorithms make little difference in affecting classification

performances of the SVM and KNN classifiers, while the Zimpute

performs the worst.

3.2 Classification based on functional

expression profiles

We further evaluate the effects of replacing MVs by KNNimpute

method on the accuracy of the classifiers built on two FEP summary

measures (arithmetic mean and median). As described in Table 2,

for MV treatments for genes with different MRs in five datasets, the

CART classifiers perform relatively poor compared with the SVM

and KNN classifiers. As demonstrated in Figure 3 and the Supple-

mentary Material (see Supplementary Data 3), in general, perform-

ing data imputation does not affect much the performances of the

FEP-based SVM and KNN classifiers, for both arithmetic mean and

median summary measures, which provide robust and precise clas-

sification results comparable with the classifiers based on DEGs.

However, for breast dataset, the FEP classifiers perform relatively

poor compared with the classifiers based on DEGs. The main reason

might be that, for this dataset, among the DEGs selected at MR

threshold 0, 5 and 10% respectively, there are only�300 genes that

can be annotated to GO for constructing the FEP, leading to too

much information loss. This result indicates that the power of FEP

approach is limited by the availability of gene functional know-

ledge.

In each dataset, although the MR thresholds for treating MVs

seriously influence the output of the DEG lists, the most significant

modules identified are relatively consistent. For example, using all

samples in the prostate cancer dataset, there are 1675 DEGs selected

at MR threshold 0% and the number of DEGs increases greatly to

2758 at MR threshold 5%. However, for the 15 modules identified at

MR threshold 0, 4 are the same and 3 are of parent–child

relationships with the modules identified at MR threshold 5%.

We take two modules identified in the prostate dataset, as examples,

to explain the disease relevance of the modules. In the module

‘muscle development’, IGF1 (insulin-like growth factor 1) is rele-

vant to the degradation of p53 and its expression level can be used to

predict the risk of prostate cancer (Chen et al., 2005), and fibroblast
growth factors (FGF-1, 2, 6, 8, FGF-2) can induce enhanced pro-

liferation and metastasis and are relevant to prostate cancer (Kwabi-

Addo et al., 2004). For the module ‘cell–cell adhesion’, it has been

suggested that the expression of cell adhesion proteins is of prog-

nostic value for prostate cancer (Kallakury et al., 2001). In this

module, CD44 is a glycosylated adhesion molecule mediating pros-

tate cell adhesion, and the interactions between CD44 isoforms and

cytoskeletal proteins may play a pivotal role in regulating tumor

cells during prostate cancer development (Welsh et al., 1995).

4 DISCUSSION AND CONCLUSION

Proper data imputation should be determined in light of the overall

objective of a study. If the next process is a classification analysis

based on some algorithms sensitive to the imputed values, such as

the KNN classifier, we recommend estimating and replacing MVs

for genes with only a small percentage of MVs (e.g. MR �5%) and

Table 2. Accuracy rates of FEP-based classifiers using KNNimpute to deal with missing data

MR Breast cancer Prostate cancer Lymphoma Gastric cancer Liver cancer

0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10%

Mean SVM 0.73 0.81 0.76 0.92 0.92 0.94 1 1 1 0.92 0.98 0.99 0.93 0.96 0.97

KNN 0.80 0.81 0.83 0.95 0.92 0.98 1 1 1 0.92 0.96 0.97 0.98 0.96 0.95

CART 0.71 0.80 0.81 0.94 0.92 0.88 1 0.95 0.95 0.86 0.92 0.91 0.92 0.90 0.90

Median SVM 0.69 0.83 0.78 0.88 0.89 0.93 1 1 1 0.94 0.97 0.98 0.94 0.91 0.95

KNN 0.80 0.81 0.78 0.91 0.92 0.96 1 1 1 0.90 0.93 0.95 0.93 0.93 0.93

CART 0.62 0.76 0.76 0.80 0.86 0.81 0.95 0.90 0.85 0.86 0.93 0.87 0.88 0.85 0.87

Fig. 3. Accuracy rates of FEP-based classifiers using KNNimpute to deal

with missing data in breast and prostate cancer datasets.
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discarding genes with larger MR, similar to the preprocess protocol

in Dudoit et al. (2002). However, based on the results of this study,

any single exclusion criterion for discarding genes with a certain

MR seems arbitrary as a general rule. For the SVM classifiers, there

are few differences in accuracy rates at different MR thresholds,

reflecting the robust characteristics of the SVM classifiers for treat-

ing noisy data. Another possible reason is that the five datasets are

non-informative as to the optimal MR cutoff for SVM classifiers.

Most imputation methods exploit the co-expression relationships

among genes across different samples for estimating MVs. The

existence of other genes with similar (high correlation) prediction

power can render data imputation less useful. When many MVs are

imputed for genes with high MR (e.g. MR >5%), the contribution of

noise or uncertainty to disease classification may overwhelm the

contribution of signal or additional information, leading to a

decrease in classification accuracy for the resulting classifier(s).

If we have to keep more genes for other types of analysis such

as finding DEGs, it may be necessary to deal with genes having

higher MRs (Jornsten et al., 2005; Scheel et al., 2005). However,
one should take precautions when drawing critical biological con-

clusions from data that are partially estimated.

Among the three kinds of classifiers evaluated in this study, based

on either DEGs or all genes, SVM classifiers are robust to varied

MV treatments, while the CART classifiers are the unstable ones.

The KNN classifiers lie in between, and are rather robust to varied

MV treatments, when built on DEGs, but when built on all measured

genes, including estimated MVs for genes with larger MR (e.g.

MR >5%), they can significantly deteriorate the performances of

the KNN classifiers. Nevertheless, based on this study, we cannot

conclude that classification based on DEGs is consistently improved

over classification based on all the genes, since using DEGs or all

genes, the accuracy rates for SVM classifiers are very similar. In

contrast, it is evident that generally, the KNNimpute, LLSimpute

and BPCA imputation algorithms have little difference in affecting

classification performances of the SVM and KNN classifiers, while

the Zimpute performs the worst.

In general, doing MV imputation does not improve much the

disease classification accuracy, indicating that a sufficient fraction

of genes with relatively reliable measurements can hold enough

information for disease classification, which might be explained

by the systematic and modular characteristics of gene expressions

in cancers (Segal et al., 2004). For the same reason, the SVM

and KNN classifiers based on functional modules can provide

precise disease classification results comparable with the clas-

sifiers based on DEGs. In general, data imputation does not

affect much the performances of the FEP-based SVM and KNN

classifiers.

The modules, used as features in the FEP classifiers, are them-

selves relatively robust to varied MVs treatments and other uncer-

tainties existed in data-preprocess procedures (Hosack et al., 2003),
making the FEP approach more biologically revealing for disease

classification. Furthermore, because it uses summary measures of

the gene expressions in the modules, the FEP approach suggests a

logical way to integrate cross-platform data, i.e. for data integration

with MVs (Warnat et al., 2005). Finally, although robust in nature,

the modules identified vary to some extent with different MV treat-

ments and DEGs selection thresholds (Pan et al., 2005). Therefore,
more biologically and statistically sounding strategies for identify-

ing DEGs and modules (Bickel, 2004; Breitling et al., 2004) deserve

further explorations for more powerful module-based analysis of the

microarray data with MVs.
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