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ABSTRACT

Motivation: Differentially expressed gene (DEG) lists detected
from different microarray studies for a same disease are often
highly inconsistent. Even in technical replicate tests using identical
samples, DEG detection still shows very low reproducibility. It is often
believed that current small microarray studies will largely introduce
false discoveries.
Results: Based on a statistical model, we show that even in technical
replicate tests using identical samples, it is highly likely that the
selected DEG lists will be very inconsistent in the presence of small
measurement variations. Therefore, the apparently low reproducibility
of DEG detection from current technical replicate tests does not
indicate low quality of microarray technology. We also demonstrate
that heterogeneous biological variations existing in real cancer data
will further reduce the overall reproducibility of DEG detection.
Nevertheless, in small subsamples from both simulated and real data,
the actual false discovery rate (FDR) for each DEG list tends to be
low, suggesting that each separately determined list may comprise
mostly true DEGs. Rather than simply counting the overlaps of the
discovery lists from different studies for a complex disease, novel
metrics are needed for evaluating the reproducibility of discoveries
characterized with correlated molecular changes.
Contact: guoz@ems.hrbmu.edu.cn; lixia@ems.hrbmu.edu.cn
Supplementaty information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
As an ‘Array of Hope’ (Lander, 1999), microarray technology has
enormous influence on modern biological researches. However, as
‘An Array of Problems’ (Frantz, 2005), microarray technology has
been challenged by many criticisms about its reliability (Frantz,
2005; Marshall, 2004; Tan et al., 2003). Often, it is the low
reproducibility of the differentially expressed genes (DEGs) lists
for a disease that raises doubts about the reliability of microarrys
(Ein-Dor et al., 2005; Miklos and Maleszka, 2004). Impressively,
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even using technical replicated samples for intra- or inter-platform
comparisons, DEG detection still shows very low reproducibility
(Tan et al., 2003). On the other hand, many studies (Shi et al.,
2006; Tong et al., 2006) suggested that most microarray platforms
can generate rather reliable and reproducible measurements.
Specifically, the MAQC (MicroArray Quality Control Consortium)
(Shi et al., 2006) studies suggested that the lack of reproducibility
of DEG lists may come from the common practice of using stringent
P-value cutoffs to determine DEGs. Thus, they suggested choosing
genes with large changes combining with a less stringent P-value
cutoff to increase the reproducibility of DEG lists, which was
criticized for being short of statistical control (Klebanov et al.,
2007).

The reproducibility of gene lists is often measured by the
percentage of overlapping genes (POG) (Ein-Dor et al., 2006;
Irizarry et al., 2005; Shi et al., 2006) between gene lists from
different microarray datasets. (Ein-Dor et al., 2006) analyzed the
POG of gene lists selected according to the correlation of gene
expressions with sample labels and concluded that, because of large
biological variations, it might need thousands of samples to reach
a high POG score. However, they did not use a proper statistical
control to guarantee that the lists comprised mostly true discoveries,
which might be misleading because the POG score can be large for
two gene lists sharing mostly false discoveries. Here, by a statistical
model treating the POG between gene lists from different datasets as
outcomes of a random experiment, we show that even when using
identical samples in technical replicate tests, with small technical
variations (Tan et al., 2003), it is still highly possible that the DEG
lists obtained with statistical control of false discoveries are very
inconsistent. Therefore, the low reproducibility of DEG lists from
current technical replicate tests does not directly indicate low quality
of microarray technology.

By resampling subsamples from three large cancer datasets
as well as simulated data, we show that the number of the
DEGs detected in each subsample by using SAM (significance
analysis of Microarray) (Tusher et al., 2001) method under FDR
(false discovery rate) control (Benjamini and Hochberg, 1995)
increases greatly as the sample size increases. The wide and
complex expression changes in a complex disease are separately
detectable at different sample size levels, further reducing the overall
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reproducibility. On the other hand, in contrast to the common belief
that current small microarray studies will introduce many false
discoveries (Klebanov et al., 2007), we show that it is entirely
possible that each separately determined list comprises mostly true
discoveries.

In many other high-throughput postgenomic areas such as
proteomics (Ransohoff, 2005b) and metabolomics (Broadhurst and
Kell, 2006), the irreproducibility problem in finding molecular
markers of complex diseases also exists and often leads to
disappointments and disputes among investigators. However, we
will show in this article that the low apparent reproducibility of
discoveries generated in postgenomic areas does not prove lack
of reliability of the high-throughput technology platforms used.
This problem might reflect a kind of ‘culture clash’ (Frantz, 2005)
between the systems biology and the traditional biology. For a
complex disease characterized with many coordinated changes of
disease markers, we need novel concepts and metrics to evaluate
the reproducibility of discovery lists at the systems biology level by
considering the correlation of molecular changes, rather than simply
counting the overlaps of discoveries from different studies.

2 METHODS

2.1 Data preprocessing and normalization
Three large cancer datasets are analyzed. The prostate cancer cDNA
microarray data (Lapointe et al., 2004) consists of 62 primary prostate
tumors and 41 normal prostate specimens measured for 46 205 clones.
The liver cancer cDNA microarray data (Chen et al., 2002) contains 82
primary hepato-cellular carcinoma (HCC) and 74 non-tumor liver tissues
measured for 23 093 clones. The overall missing rate with respect to the
whole data in each dataset is 10% and 5% for prostate and liver cancer
data, respectively, and a lower missing rate may reflect higher data quality.
The leukemia data (Yeoh et al., 2002) consists of 79 TEL-AML1 and 64
Hyperdiploid samples measured for 12 600 probe sets by Affymetrix U95A
GeneChip (Affymetrix Incorporated, Santa Clara, CA). The original authors
Yeoh et al. found a high reproducibility of measurement signals between
replicate samples. Additionally, we analyze a subset of the MAQC dataset
(AFX_1) for technical replicated samples (Shi et al., 2006).

The cDNA data is log2-transformed and then normalized as median 0
and SD 1 per array, as adopted in Oncomine database (Rhodes et al.,
2007). The CloneIDs with missing rates above 20% are deleted. The
remaining missing values are replaced by using the kNN imputation
algorithm (k = 15) (Troyanskaya et al., 2001). The Affymetrix GeneChip
data is preprocessed by the robust multi-array analysis (RMA) and then
between-array median normalized (Irizarry et al., 2005). The most recent
(July, 2007) SOURCE database (Diehn et al., 2003) is used for annotating
CloneID to GeneID. Because all the current normalization procedures are
debatable (Do and Choi, 2006), we additionally try LOWESS (Yang et al.,
2002) and median global (Quackenbush, 2002) normalizations for cDNA
data. For theAffymetrix GeneChip data, we additionally apply the commonly
used software MAS5.0 (Gautier et al., 2004) which performs background
correction using neighboring probe sets. For the gene selection problem,
global normalizations as adopted in this study are proper choices because
local normalizations usually require selecting non-DEGs beforehand.

2.2 Selection of DEGs
In the real datasets, we use the most popular SAM (samr_1.25 R package)
method (Tusher et al., 2001) to select DEGs. In the statistical model, we
use t-test to select DEGs because the simulated data is ideally normally
distributed. While, the multiple statistical tests are controlled by FDR defined
as the expected percentage of false positives among the claimed DEGs

(Benjamini and Hochberg, 1995). Because the FDR estimation of SAM might
be overly conservative (Xie et al., 2005; Zhang, 2007), we also apply the
FDR estimation method suggested by Zhang (2007) following the idea of
Xie et al. (2005), and refer it as the modified SAM method.

2.3 Evaluation of the apparent reproducibility
The reproducibility of gene lists is often measured by the POG metric (Ein-
Dor et al., 2006; Irizarry et al., 2005; Shi et al., 2006). However, because
the POG metric depends on the lengths of gene lists (Chen et al., 2007;
Shi et al., 2005), it cannot be used to compare the reproducibility of gene
lists with different lengths. Therefore, we refer to the POG score as apparent
reproducibility.

To study some major factors affecting the POG score, we first analyze
a simple statistical model: all the DEGs are supposed to have the same
expected fold change (FC) and coefficient of variance (CV) at the original
measurement (intensity or ratio) level and the data is log-normally distributed
in both groups of samples. Then, we can reason that the log-expression
follows normal distribution with equal variance in two groups of samples.
Thus, t-test can be ideally used to detect DEGs. When using n samples per
group and FDR control level fdr to detect DEGs with FC = fc and CV = cv,
the expected power β and POG of the DEG lists can be calculated as below
(see details in Supplementary Methods):

β = t′df ,λ(−c)+1−t′df ,λ(c) (1)

E(POG)=β×
(

fdr2 ×π

(1−π )(1−fdr)
+1−fdr

)
(2)

where π is the proportion of DEGs. c is determined by fdr (Pawitan

et al., 2005a). λ=√
n/2×

(
log fc/

√
log(cv2 +1)

)
is the parameter of the

non-central t-distribution, and df = 2n−2.
When selecting two DEG lists with length l1 and l2 from N genes,

the probability that they share at least k genes by random chance can be
calculated by the hypergeometric probability model.

For DEGs in real data with heterogeneous expression changes, we use
a mixture model (Pawitan et al., 2005b) to estimate the pattern of the FC
and CV distributions. Then simulated data are created using the estimated
parameters from the real data to illustrate some more complex changes of the
POG (see detail in Supplementary Methods). Additionally, we also simulate
the heterogeneous differential expressions of DEGs by a model proposed by
Perelman et al. (2007). Briefly, variance σ2

i varies randomly, following the
scaled inverse of a χ2-distribution d0s2

0/x2
d0

with d0 degree of freedom. Fold

difference is zero for non-DEGs and follows normal distribution N(0,v0σ
2
i )

for DEGs. Here, the tuning parameters s0, v0 and d0 are set as 0.5, 1 and 12,
respectively, to balance the variance differing moderately among genes.

3 RESULTS

3.1 Low apparent reproducibility of DEG selection
In general, the relationship between the POG expectation and some
variables such as FDR and sample size is complicated, as shown in
Figure 1. However, some trends can be observed.

(1) The expected POG increases as the FC increases (or CV
decreases), when fixing the other parameters. In Equation
(2), a larger FC (or a smaller CV) will produce a larger λ

and smaller c, leading to a higher power and POG. Figure 1A
and D, respectively, demonstrates the POG changing with
the increased FC (or CV) for the selected DEGs with two
CV (or FC) values. Here, the FDR control level is 1%, the
proportion of DEGs is given as π = 10% and the sample size
is five per group.
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Fig. 1. Distributions of the POG with some parameters. The changes of the POG are represented in line plots against each variable in x-axis when fixing the
other parameters in the expected POG model. (A) FC. (B) FDR control level. (C) PI (π ) and (D) CV. (E) Sample size. Same legend for (B) and (C).

(2) When fdr is very small (≈0), Equation (2) can be
approximately simplified as E(POG)≈β×(1−fdr)≈β.
Thus, if FDR is stringently controlled, the POG is
approximately equal to the power. Fixing the other
parameters, when the FDR changes in an acceptable range, the
POG goes up with the increasing FDR level. Figure 1B shows
that as the FDR increases from 1% to 30%, most POGs of the
selected DEGs with different FC and CV values increase.
However, when FC is 2 and CV is 15%, the POG achieves
the highest value at a small FDR control level (about 3%)
and then decreases as the FDR keeps increasing because of
the increased false positives. Here, the proportion of DEGs is
given as π = 10% and the sample size is five per group.

(3) Generally, when fixing the other parameters, a larger π will
increase the length of DEGs and thus a higher POG. As shown
in Figure 1C, as π becomes larger, the POGs of the selected
DEGs with different FC and CV values increase. Here, the
FDR control level is 1% and the sample size is five per group.

(4) When fixing the other parameters, using more samples can
increase the power and thus the POG. Figure 1E shows the
changed POGs of different kinds of the selected DEGs as the
sample size increases. Here, the FDR control level is 1%, and
the proportion of DEGs is given as π = 10%.

In technical replicate tests with no biological variation, the CV of
the original signals could be <15%, indicating acceptable technical
quality (Shi et al., 2006). However, at this CV level, when using five
samples per group to detect DEGs with 1.5 FC, the expected POG
is only about 10% and it will decrease as the FC decreases (Fig. 1).
Notably, when FC increases from 1.5 to 2, the POG jumps from 10%
to 93% because the power increases from 10% to 94%. Note that the
POG is approximately equal to the power at a stringent FDR control
level. The above analysis suggests that it is highly likely, rather than
‘surprisingly’ (Marshall, 2004), that DEG lists from small-scaled

technical replicated tests (Shi et al., 2006; Tan et al., 2003) are very
inconsistent.

In the presence of large biological variations (Klebanov and
Yakovlev, 2007), lower POG scores are expected. If the total CV
increases to 30%, the expected POG approaches to zero while using
five samples per group to detect DEGs with 1.5 FC. When the CV
is 100%, using 200 samples can only achieve 46% POG for DEGs
with 1.5 FC, and thousands of samples are required to achieve 50%
POG for DEGs with smaller changes (FC = 1.2).

3.2 Heterogeneous expression changes in real data
Here, we analyze three large cancer datasets. To mimic small
experiments from each dataset, we randomly produce subsets at
different sample size levels, ranging from five samples per group
(cancer or normal) to the highest sample size level of the dataset.

Figure 2A shows the results for the cDNA microarry data
normalized by the method adopted in Oncomine database and for the
Affymetrix GeneChip data normalized by RMA. In each dataset, by
using SAM with 1% FDR control, the average number of the DEGs
identified across 100 resampling subsets increases dramatically as
the sample size increases. For example, even when the sample size
increases from 35 to the highest level of 40 samples per group
in the prostate cancer data, the median number of DEGs increases
from 1612 to 1889. Figure 2A also shows the trend of the POG
increasing with the increased sample size. However, the POG may
be overestimated since larger subsamples from a dataset will have
larger sample overlaps. Similar results are observed when using 10%
FDR control, the other normalization methods (Supplementary Figs
S1 and S2) and the modified SAM method (Supplementary Figs S3
and S4).

It is known that, at a FDR control level, increasing sample size
will increase the power of an appropriate statistical test in finding
true DEGs while decreasing the probability of declaring non-DEGs
as DEGs (Pawitan et al., 2005a). The observation that the number of
the detected DEGs increases with sample size suggests that the three
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Fig. 2. The numbers of the DEGs detected and the corresponding average POG under different sample size conditions. (A) The DEGs identified with 1%
FDR control. For each dataset, a box-and-whisker plot shows the DEG number in the left y-axis across 100 resampling subsets. The symbol ‘+’ represents
outlier data. The corresponding average POG is represented in the right y-axis as line plot. (B) The heterogeneous expressions of the predefined DEGs in
the simulated data. The white bars represent the proportions of the DEGs with FC ranging from 1 to 5 stepped by 0.2, while the DEGs with FC above 5 are
grouped together. The black bars represent the fractions of the DEGs detected under different sample size conditions. Genes with smaller expression changes
could be detected when more samples are used.

relatively ‘large’ datasets might still be inadequate for studying the
heterogeneous expression changes in cancers.

Then, as a proof of principle, we analyze the heterogeneous
differential expressions by a simulation model (Perelman et al.,
2007), which is free of any hidden systemic bias possibly existing
in real data. As described briefly in Section 2, the simulated data is
normally distributed, with variance and FC varying across genes. We
produce samples each consisting of 10 000 genes among which 30%
is defined as DEGs. Now, as the sample size increases, the number
of the detected DEGs gradually converges to the predefined number
of DEGs, allowing false positives controlled by 1% FDR (Fig. 2A).
For example, using 1500 samples per group, we can detect about
91% of all the predefined DEGs, while excluding most non-DEGs.
Figure 2B shows smaller expression changes will be detected with
larger samples.

Considering the heterogeneous differential expressions in the real
data, we use the mixture model (Pawitan et al., 2005b) to estimate
the pattern of the FC and CV distributions in the three cancer
data and the MAQC data, respectively. Then simulated data with
10% DEGs are created using the estimated parameters to mimic
the heterogeneous differential expressions in each dataset. Using
five samples per group, the POGs of the DEGs selected with 1%
FDR control from the simulated data for these cancer data are all
near zero, while that for the MAQC data is relatively large as 62%.
Due to the nature of the MAQC’s experimental design for technical
replicate tests, most DEGs from the MAQC data have large FC (>3-
fold) and low CV which show a strikingly different profile from the
heterogeneous cancer datasets (Supplementary Fig. S5).

3.3 DEG lists comprising mostly true discoveries
Current FDR control procedures, including the one adopted
in SAM, may be unstable in small samples, especially in the

presence of correlated expression changes. We thus evaluate
the actual FDR of a DEG list detected in simulated small
samples, according to the predefined DEGs. Using 100 resampling
subsamples with five samples per group, at 1% FDR control level,
the median actual FDR is near zero and the median number of the
detected genes is only 16. At 10% FDR control level, the median
actual FDR is 3% and the median number of the detected genes
increases to 139.

In each real dataset, by using SAM with 1% FDR control, we
empirically define the DEGs obtained from the full samples as a
nominal gold standard set (Pavlidis et al., 2003). However, because
such a gold standard set may include only a small fraction of
the true positives, it is very likely that many DEGs from small
samples will be wrongly judged as false discoveries, leading to
enlarged nominal actual FDR estimates. Nevertheless, when using
100 subsamples with 5 samples per group, at 1% FDR control level,
the median nominal actual FDR is also near zero for each dataset
(Table 1), while the median number of the detected DEGs is only
6, 17 and 9 for prostate, liver and leukemia data, respectively. As
the control FDR level goes up to 10%, these numbers increase to
45, 92 and 37, while the nominal median actual FDR is <3% for
each dataset. Similar results are observed in the data normalized
differently and using the modified FDR method (Supplementary
Tables S1 and S2).

The low actual FDR levels in both simulated and real data indicate
that it is entirely possible that each list from small samples comprises
mostly true discoveries, though the DEG lists separately detected in
different studies tend to be inconsistent (Fig. 2A). Notably, the genes
subtly altered have a strong impact on FDR via increasing the size
of the proportion of DEGs. Most current FDR control approaches
often underestimate this proportion and thus overestimate the FDR
value (Pawitan et al., 2005b), especially when the multiple tests are
not independent with each other.
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Table 1. The power and actual FDR (using 1% and 10% FDR control, five
samples per group)

FDR Dataset
(normalization)

Numbera Tp numberb Powerc actual FDRd

1% Simulation 16 (4) 16 (4) 0.005 (0.001) 0(0)
Prostate
(Oncomine)

6 (5) 6 (4) 0.003 (0.002) 0(0)

Liver
(Oncomine)

17 (8) 17 (7) 0.005 (0.002) 0(0)

Leukemia
(RMA)

9 (6) 9 (6) 0.006 (0.004) 0(0)

10% Simulation 139 (16) 134 (16) 0.045 (0.005) 0.03 (0.01)
Prostate
(Oncomine)

45 (88) 44 (83) 0.01 (0.019) 0.01 (0.02)

Liver
(Oncomine)

92 (73) 88 (70) 0.015 (0.012) 0.02 (0.02)

Leukemia
(RMA)

37 (62) 35 (59) 0.016 (0.027) 0.03 (0.04)

This table shows when using 100 resampling subsamples with five samples per group
in each dataset, under 1% and 10% FDR control, the median and the quartile deviation
(in the parentheses) of:
aThe total number of the DEGs detected.
bThe number of the detected DEGs appearing in the nominal gold standard.
cThe power of the resampling experiments for DEG detection.
dThe nominal actual FDR.

Despite an overall low POG level, some genes are frequently
selected from different subsamples, which are often associated with
the cancer under study (Supplementary Table S3).

4 DISCUSSION
Here in this article, we compare the DEG lists from different
subsamples in a same study to avoid any platform and site
differences. According to our analysis, even in some ideal situations
like technical replicate tests with small technical variations, the
DEG lists can still be very inconsistent. Therefore, the apparently
low reproducibility of DEG lists from current technical replicate
tests does not indicate low quality of microarray technology. In
different studies for a complex disease such as cancer, it will be
more difficult to obtain a consistent DEG list, though each separately
determined list may comprise mostly true DEGs. Obviously, genes
with modest or small changes will decrease the overall POG. The
MAQC suggested a FC-based approach with a less stringent P-value
to balance statistical significance and reproducibility (Shi et al.,
2006). In our simple model, when the CV is given, larger FC
can lead to larger POG expectation. This result partially supports
the MAQC suggestion. Therefore, for reaching a higher (apparent)
reproducibility, we do not recommend using very stringent FDR
control level in determining DEGs. However, the relationship
between the statistical significance (FDR) and the reproducibility
(POG) is complex. Note that the POG from the MAQC data
that tends to be large is specific to their technical replicate data
characterized with small CV and inherently large FCs (brain samples
versus cell culture). In most biological datasets, there is a more
intricate interplay between CV, FC and POG. For example, in the
three cancer datasets, genes with larger FC tend to have larger CV
(Supplementary Fig. S5), which might decrease the POG of DEG
lists even if they only include genes with large FC.

It has been suggested that using thousands of samples for a disease
could finally produce a reproducible DEG list (Ein-Dor et al., 2006),
which, however, would still be hardly reproducible in small samples.
It has also been suggested that we may find consistent DEGs by
extracting the genes frequently detected over many samplings (Li
et al., 2004; Qiu et al., 2006). However, as suggested by this study,
this practice tends to miss most of the significant genes because of the
low reproducibility of DEG lists from different subsamples. Thus,
only accepting reproducible data would infer misleading biological
conclusions (Hakes et al., 2008).

It is believed that the reproducibility of scientific discoveries is of
fundamental importance (Marshall, 2004) and ‘a study that cannot
be reliably reproduced has little value’ (Klebanov et al., 2007).
However, currently, both the concepts and metrics of reproducibility
of DEG selection are often loosely defined, using intuitive terms
such as consistency (Ein-Dor et al., 2006), concordance (Shi et al.,
2006), agreement (Shi et al., 2006), stability (Ein-Dor et al.,
2006; Qiu et al., 2006), commonality (Klebanov et al., 2007) or
rediscovery rate (Xu and Li, 2003). As mentioned in Section 3, the
most frequently used POG metric depends on the lengths of gene
lists (Chen et al., 2007; Shi et al., 2005) and cannot be used to
compare gene lists with different lengths. Here in this article, we
just use POG to demonstrate that apparently low reproducibility
can be produced from technically reliable measurements, without
concluding how high the reproducibility is or which list is more
stable. To provide a better statistical basis, as described in Section 2,
we may calculate the probability P of a POG score observed by
random chance. Excluding the cases of no common genes, the
low POGs in Figure 1E from the model study are actually highly
statistically significant, with P-values ranging from 10−12 to 10−11.
As for the studies by MAQC, the reported lower POG on the
National Cancer Institute (NCI) platform (Shi et al., 2006) does
not necessarily mean that its measurement quality is lower than
the others, because the DEG lists produced by this platform are
much shorter. Actually, all the POGs in the MAQC data from
different platforms, including the NCI platform, achieve very small
P-values ranging from 10−11 to 10−13. Alternatively, adjusting
POG metric by list lengths could be considered but it would still be
difficult to interpret the magnitude of scores corrected by different
chance overlaps. Till now, no single metric to properly evaluate the
reproducibility of discovery lists can be universally recommended.
We note that the reproducibility of microarray studies can be
evaluated at raw intensity or log ratio level by using metrics such as
coefficient variance (Shi et al., 2006), Pearson correlation coefficient
(Guo et al., 2006) and intra-class correlation coefficient (Dobbin
et al., 2005). However, high reproducibility at the measurement level
does not guarantee high reproducibility of a consecutive analysis
since statistical decision-making procedures do matter.

On the other hand, as a sign that two microarray studies have
detected a same result for a disease, it is not necessary that the
DEG lists themselves are consistent (Subramanian et al., 2005).
For example, for a same experiment, although gene lists generated
by different statistical methods can be strikingly different, they
could be rather consistent according to the functional modules they
overrepresented (Guo et al., 2006; Hosack et al., 2003; Zhu et al.,
2007). Recently, we also showed that the DEG lists with very
different lengths detected under varied statistical thresholds and
from different studies could be functionally consistent according to
their semantic similarity. For example, for the two prostate cancer
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datasets produced by different platforms, although the DEG lists
selected using SAM at 10% FDR control level had only ∼20%
overlaps, their semantic similarity was still high and statistically
significant (P < 0.05) (Yang et al., 2008). Thus, some functional
aspects of the expression changes in a disease could be captured
by only a fraction of DEGs. Similarly in large-scale screens for
cancer mutations, the inconsistent candidate lists across studies
tend to be functionally consistent (Chen et al., 2007). Besides
cancer heterogeneity, the inconsistency of cancer genes detected
from current mutation screens might also be a statistical outcome of
using inadequate samples.

In general, low apparent irreproducibility of discoveries (e.g.
disease markers) is a common problem in many other high-
throughput postgenomic areas such as proteomics (Ransohoff,
2005b) and metabolomics (Broadhurst and Kell, 2006). Biologically,
a complex disease is often characterized with many coordinated
molecular changes (e.g. gene or protein expressions) and their
statistical rankings also fluctuate, which alone can result in low
discovery consistency. Specifically in microarray data, studying
correlated differential expressions in a continuous spectrum might
be a reasonable attempt (Klebanov et al., 2006).

Notably, most high-throughput technologies can generate huge
data from a few patients, which might introduce high-dimensional
or overfitting problem in data anayses (Broadhurst and Kell, 2006;
Frantz, 2005; Ransohoff, 2004). However, the high-dimensional
problem might not be so serious as it looks like, because molecular
changes are often correlated under a disease condition (Guo et al.,
2007; Klebanov et al., 2006; Subramanian et al., 2005). Only a
few independent (non-redundant) components may exist behind
the huge data (Guo et al., 2005; Xu et al., 2006). It is true
that using small samples can hinder the discovery of important
disease markers (Marshall, 2004), especially when we improperly
treat each molecular change as an independent event. However,
whether a study is ‘small’ depends on the correlation structure of
the data and the type of the discoveries we are searching for, rather
than only on the naive number of the samples. Finally, we note
that the reproducibility problem is only one of the fundamental
issues in validation of high-throughput discoveries. Being equally
important, systematic biases in experimental designs and other
problems remain to be resolved in high-throughput systems biology
studies (Ransohoff, 2004, 2005a).
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